VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) II-Semester New Examinations, May/June-2018

Basic Engineering Mechanics

(CSE, ECE \& IT)
Max. Marks: 60
Time: 3 hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20 \mathrm{Marks})$

1. A force of 20 kN is passing through the points $(1,2)$ and $(2,5)$ with reference to Cartesian coordinate system. What is the component of the force in X direction?
2. The resultant force of a general system of forces acting on a body in a plane is zero. What would the state of the body? Comment
3. Write the equilibrium equation of system of parallel forces in plane.
4. What are the characteristics of a moment?
5. In a simply supported truss the members are 5 and joints are 4 . Comment on the nature of the structure.
6. State the disadvantage of method of joints.
7. State laws of friction.
8. Define limiting friction and cone of friction.
9. What is the radius of gyration of a circular section of diameter ' D '?
10. State the parallel axes theorem.

> Part-B $(5 \times 8=40$ Marks)
> (All sub-questions carry equal marks)
11. a) Find the distance x along $A B$, at which a horizontal force of 60 N should be applied to hold the uniform bar $A B$ in the position as shown in Fig.1. Bar $A B$ is 12 m long and weighs 140 N . The incline and the floor are smooth.

b) Obtain a moment vector of 100 N force acting at $(2,5,3)$, passing through $(7,10,2)$ about the origin $(0,0,0)$.
12. a) Find the reaction at the contact points $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ if the cylinders are similar with weight 100 N each.
b) A 10 m bar of negligible weight rests in a horizontal position on the smooth inclines as shown in the figure. Compute the distance x at which the load $T=200 \mathrm{~N}$ should be placed from point B to keep the bar horizontal.

Fig. 2

Fig. 3
13. a) Determine the force in members AB, CD and CE of the truss shown in Fig. 4.
b) Analyze the triangular truss shown in the Fig. 5.

Fig. 4

Fig. 5
14. a) In Fig. $6, \mathrm{M} 1$ and M_{2} are two masses of 22.5 kg and 14 kg respectively. They are tied together by a rope parallel to the plane. The coefficient of friction between M_{1} and the plane is 0.25 , and between M_{2} and the plane it is 0.5 . Determine the value of the angle θ at which sliding will occur. What is the tension in the rope?
b) Determine the maximum and minimum force P that holds the system in equilibrium shown in Fig. 7. The belt friction at the pulley A is 0.45 and the same at pulley B is 0.5 .

Fig. 6

Fig. 7
15. a) Starting from the fundamentals find the M.I. of a rectangular section of width ' b ' and depth 'd' about an axis passing through the base.
b) Starting from the fundamentals determine the centroid of a semicircular area of radius R.
16. a) Two cylinders are piled in a rectangular ditch as shown in Fig. 8. Neglecting friction, determine the reactions at various contact points.

Fig. 8
b) Determine the resultant of the following forces acting at origin O .
$\mathrm{F}_{1}=200 \mathrm{~N}$ passing through $(2,3)$
$\mathrm{F}_{2}=400 \mathrm{~N}$ passing through $(-2,3)$
$\mathrm{F}_{3}=600 \mathrm{~N}$ passing through $(2,-3)$
17. Answer any two of the following:
a) Determine the force in members $\mathrm{AB}, \mathrm{BD}, \mathrm{BC}$, and AC of the truss shown in Fig. 9.

Fig. 9
b) A uniform ladder 3 m long weighs 600 N . It is placed against a vertical wall at an angle of 60° with the ground. How far along the ladder can a 750 N man climb before the ladder is on the verge of slipping? Assume angle of friction at all contact surfaces as 15^{0}.
c) Determine the co-ordinates of the centroid of the shaded portion of the lamina shown in Fig. 10.

Fig. 10

